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Abstract

This paper describes and analyzes the design of TigerS-
witch, a PC-based private branch exchange (PBX) designed
at Princeton University. Building TigerSwitch required cre-
ating custom hardware and software designed to fit onto a
standard IBM PC-compatible platform. Our design experi-
ence provides several lessons which we believe extend to
other embedded design domains: the system architecture
required to meet performance goals is often not isomorphic
to the structure of the specification; system-level perfor-
mance analysis is an essential part of system architecture
design; architectural decisions must be made on the basis of
estimates before complete implementations of the compo-
nents are available; and most allocations of functions to
software or custom hardware are obvious, while a few are
very difficult.

1 Introduction

We designed TigerSwitch as a study in embedded comput-
ing system design. TigerSwitch is a private branch
exchange (PBX), or a customer-owned telephone switching
system. This paper describes the major features of the
design itself and the important decisions we made while
designing the system.

A PBX is a good example of embedded computing system
design for two reasons. First, it implements a wide variety
of functions: the actual switching of data between tele-
phones is relatively simple; call routing and billing func-
tions require more complex algorithms unlikely to be
implemented in custom hardware; switch maintenance and
initialization routines require a user interface. Second, some
of the PBX’s functions must be performed to hard real-
time deadlines—for example, the customer will hear prob-
lems in the phone call if voice samples are not supplied at
the required 8 kHz rate. The combination of complex func-
tion with strict performance goals is typical of many
embedded applications and presents a significant challenge
to embedded system tools.
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Designing the architecture of an embedded computing sys-
tem can be broken into four steps7: partitioning the sys-
tem’s function into processes; allocating those processes to
processing elements; scheduling the processes in time; and
mapping the generic processing elements into physically
realizable component types. During each of these steps,
design decisions for TigerSwitch were guided on the one
hand by the performance requirements of telephone sys-
tems and on the other hand by the desire to minimize design
time and implementation cost.

The next section surveys telephone switching systems and
describes the TigerSwitch architecture. The next three sec-
tions describe three important problems we faced during the
design of TigerSwitch: Section3 describes the require-
ments which dictated the process structure of TigerSwitch;
Section 4 describes performance analysis for TigerSwitch
and how it affected function allocation. Finally, Section 5
provides some general comments on these design problems.

2 Telephone switching system design

2.1 Switching system principles

TigerSwitch implements only basic voice service, known as
plain old telephone service (POTS). We chose not to
implement advanced ISDN features like data transmission
for expediency. Telephone-quality audio is sampled at an 8
kHz rate, corresponding to a sampling interval of 125 us,
using an 8-bit sample which has been scaled using the p-
law. to correct for the dynamic range of the human ear.

A switching system makes connections required by callers
as well as keeping billing records, providing switch mainte-
nance services, providing advanced customer features like
call forwarding, and other services. A private branch
exchange (PBX) is a switching system operated by a cus-
tomer rather than the service provider; PBX’s are usually
constructed to lower standards of reliability than are the
switching systems used in the network. The subscriber
loop is the circuitry between the switch and the customer’s
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FIGURE 1. The DTMF signaling scheme.

telephone. A line card is the interface between the switch
and the subscriber loop. A telephone goes off-hook when
the receiver is lifted and goes on-hook when the phone is
hung up. A CODEC is a analog-to-digital/digital-to-analog
converter pair. Dual-tone multi-frequency (DTMF) sig-
naling! is used to send digits to the switch from the sub-
scriber’s telephone. As shown in Figure 1, DTMF signaling
assigns a distinct sinusoidal frequency to each row and col-
umn on the touch pad; signals at the proper row and column
frequencies identify a digit, in the absence of significant
energy components at other frequencies. The switching
fabric is the component which routes telephone call data
between subscribers.
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FIGURE 2. Time-division multiplexing for digital call
routing.

1. Touch-tone is AT&T’s trademarked name for DTMF.
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A simple and common architecture for digital PBXs'* is to
implement the switching fabric using time-division multi-
plexing through a shared memory as shown in Figure 2.
Each subscriber line has one writable data port connected to
the telephone speaker and one readable port connected to
the microphone. Each subscriber line is associated with two
memory locations, either by directly mapping the line cards
into memory or by transferring the CODEC data to the
memory location. A call requires transferring data between
two phones once every sampling period: the microphone
data from one telephone is copied to the other telephone’s
receiver and visa versa. The pattern of data transfers is
determined by the connections required customers’
requested connections.

A line is typically specified as a state machine which
describes what actions are to be taken at each in the calling
process. The line-as-state machine model breaks down
when features like conference calling are introduced, since
a call no longer cormresponds to a connection between two
lines. The switch also cannot be modeled as a collection of
disjoint call state machines, since operations like billing
and call routing must be handled globally. However, model-
ing the switch activity as a collection of processes which
represent calls does give us a good handle on the major
operations which must be performed during call processing.

A line goes through several states in the normal processing
of a call:

1. The caller’s line goes off-hook, moving the line from the
on-hook state to a state at which the switch is waiting
for a number to be dialed.

The switch allocates a DTMF decoder to the line. The
caller’s DTMF digits are decoded.

3. The call routing system determines a destination for the
call.

The DTMF detector is deallocated and a ring signal is
sent to the destination, placing the line in the ringing
state.

5. When the callee’s phone goes off-hook, both lines are
put in the connected state. The billing system starts the
call timer.

. When either phone goes on-hook, that line is put in the
on-hook state and the billing system stops timing the
call.

. When the other line goes on-hook, it is put in the on-
hook state.

A switching system has several hard real-time deadlines of
varying durations:
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FIGURE 3. The process architecture of TigerSwitch.

voice samples must be transferred by the switching fab-
ric every 125 ps;

a DTMF signal must be held for at least 0.1 sec to be
valid.

the start and termination of a call must be measured by
the billing system to an accuracy of 0.5 sec;

the average time from a phone going off-hook to gener-
ating a dial tone should be no more than 3 sec.

(A line is not given a dial tone until a DTMF detection unit
is allocated to the line. Because some switching systems
supply only a small number of DTMF detectors, the dial
tone acquisition time is probabilistic. The performance
requirement is usually specified as an average dial tone
acquisition time; customers become unhappy if they pick
up their telephone and do not promptly hear a dial tone.)

2.2 The TigerSwitch implementation

TigerSwitch is implemented on an IBM PC-compatible
computer. A PC consists of a CPU, a system bus commonly
called the ISA bus though different models have slightly
different busses, some standard peripherals and timers, and
some low-level software known as BIOS (Basic I/O Sys-
tem). We chose a PC as the platform for TigerSwitch
because it combined low cost with a powerful, well-known
software development environment. The ability to quickly
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write programs to test system function was especially
important for the development of custom hardware. Pana-
sonic sells a small office PBX which is implemented on a
PC platform, demonstrating that this design choice is a
practical one for the low end of the PBX market. Many
other laboratory and industrial control systems are imple-
mented on PCs as well. Our design goal for the project was
to minimize design time. TigerSwitch was designed in one
semester as a class project; because students’ commitments
change radically at the end of each semester, we had to be
sure that our system could be complete or nearly so in one
semester’s time. Many commercial embedded systems are
designed to strict time-to-market constraints which resem-
ble our deadline; we have also tried to describe how the
design would change under a different set of constraints.

The combined hardware/software architecture of TigerS-
witch is shown in Figure 1. Each line card is a device on the
PC’s ISA bus; we also had to design a timer to generate
interrupts at an 8 kHz rate since the PC’s timers cannot be
programmed to run that fast. The software is partitioned
into two processes. One is executed every 125 s; it keeps
track of the basic call state and executes the data moves
required to implement the switching functions. The other is
executed as a background task; it keeps track of the call
state pertinent to call routing (such as how many digits have
been dialed by a line), maintains billing information, and
provides simple maintenance functions like displaying the
current set of calls.



A first difficulty encountered in the design process was
finding a succinct specification of a PBX’s function. In fact,
we found no complete functional description of a basic
PBX, though we found some papers such as Zave’s® which
gave some helpful descriptions of switching functions. We
performed several walkthrough simulations to determine
both whether our specification was sufficiently complete
and consistent and to help us make some simple architec-
tural decisions. In a walk-through, we played the roles of
various hardware and software components: the line card,
the switching fabric, erc. We simulated data and control
communication by speaking, such as “I’m going off-hook
now.” Our first walk-through simulated a simple call; later
walkthroughs considered billing and non-standard condi-
tions like failing to hang up. Walkthroughs made certain
deficiencies immediately apparent and clarified the work
required to keep track of the call state. While we felt com-
fortable with this informal specification, we never had a
formal specification of the switching system’s function.

The TigerSwitch software was implemented in C++ using
the Microsoft C++ development environment. The switch-
ing system is implemented in about 1,000 lines of code. As
mentioned above, we had to build our own 8 kHz timer to
provide interrupts at the sampling rate; the billing/routing
process was executed periodically from interrupts gener-
ated by a standard PC/DOS timer.

The lowest-level 1/O routines for standard devices such as
the keyboard and the disks are provided by BIOS, a collec-

FIGURE 4. The TigerSwitch line card and its breadboard prototype.
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tion of ROM-based code in the PC. BIOS does not support
non-blocking I/O—it does not return control to the caller
until the I/O operation is complete. The lack of non-block-
ing I/O enforced serious limitations on the real-time archi-
tecture. Most importantly, we could not access the disk at
any time the switching fabric is activated. As a result, Tiger-
Switch cannot write billing data to disk while the system is
in operation. Rather than build a non-blocking non-volatile
memory system, we chose to buffer account data in mem-
ory and write it to disk during maintenance operations.
However, such a design would not be acceptable for com-
mercial-scale switching systems. The possibility of major
design restrictions, which may not be discovered until suffi-
cient experience with the platform has been obtained during
implementation, is an inherent risk in using existing plat-
forms. Any system design methodology which takes advan-
tage of large components must either ensure that the
components have been thoroughly characterized or that the
time required for characterization is built into the design
schedule.

The line card and its breadboard prototype are shown in
Figure 4. We implemented one line per line card largely to
make the printed circuit board less dense and easier to
route; a more commercial design would have implemented
two or more lines on a single line card. The number of line
cards per switch is limited by the capacitive loading restric-
tions of the PC’s ISA bus, which can handle 8-12 cards. The
line card circuits and the ISA bus interface were debugged
on the breadboard. A two-layer printed circuit board was



then designed and fabricated. The line card uses the 16-bit
AT bus standard w send both sample data and line status in
a single bus transaction. Each card is mapped into the I/O
address space; its address can be set via DIP switches.

3 Process architecture

Our first lesson in the design of TigerSwitch was that the
functional decomposition which is natural in specifying the
system does not necessarily correspond to the hardware-
software architecture which provides the required level of
performance. In the course of the system design, we ended
up with a process structure which was dramatically differ-
ent from the functional decomposition natural to switching
system specifications.

We started the project with the intent of using the simplest,
cleanest possible architecture for the system. The most
direct architecture would implement each call as a separate
process. We identified severe performance problems with
the call-as-process decomposition during the first walk-
through. The worst-case performance in an a-line PBX is
easy to identify: each call is a process; all lines go off-hook
simultaneously, causing n processes to either be created
(assuming each call starts with an off-hook) or to be acti-
vated (assuming that a call is rooted at a line). Activating all
these processes requires substantial initial overhead for cre-
ating/activating the processes, with continual overhead for
context switching between all the simultaneously active
processes. When a line goes off-hook, the switch must allo-
cate a DTMF detector and initiate the dial tone. Telephone
systems specify a maximum amount of time that a customer
should wait to receive a dial tone. Even though this specifi-
cation is not safety-critical, failing to meet it may be suffi-
cient reason for the customer to refuse delivery of the
switch. Given that both process creation and process con-
text switching often take milliseconds, it is unlikely that any
platform would provide sufficient performance to let us
implement each call as a separate process.

We quickly settled on the two process architecture of
Figure 3 to reduce context-switching overhead. We split the
call state between the two processes: the switching fabric
process keeps the state of interest for switching, such as the
call’s destination; the billing/routing process keeps state of
primary importance to these operations. However, each pro-
cess keeps the relevant state for all lines in the system. For
example, the switching fabric process keeps a table which
shows, for each line, whether the line is active and any other
line to which it is connected for a call.
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4 Performance analysis and allocation

Embedded computing systems are built from complex com-
ponents. The selection of the proper components suited to
the performance and cost constraints is the major task of
system implementation. We prefer to view the design of the
hardware and software architectures of such a system to be
an function-to-component allocation process rather than a
hardware-software partitioning processes. While we may
partition a function into a sequence of processes, we allo-
cate those processes to particular components to determine
their implementation—a function allocated to a CPU is
implemented as software executing on that CPU while
another function may be allocated to a custom hardware
unit. .

When designing TigerSwitch, we had to choose the PC
platform, a combination of CPU and bus, and allocate func-
tions to that hardware engine to sustain the required perfor-
mance at the lowest cost. Because the components are
complex, characterizing them is difficult to do in general—
a single performance number does not usually reflect the
component’s performance on any particular application. We
used a combination of estimates and direct measurements to
analyze the performance of critical sections of TigerSwitch.

Walkthroughs identified two potential bottlenecks in the
switch: the switching fabric and DTMF detection. We
found the analysis of switching fabric performance to be
straightforward but DTMF detection analysis to be both
critical and challenging.

for (i=0; i<N; i++) {
/* one half of the transfer */
temp = get_card(i);
put_card(route][i],temp);
/* transfer the other way */
temp = et_wrd(rotﬂe[{]);

| put_card(i,temp);

FIGURE 5. Structure of table-driven time-division
multiplexed switching fabric code.

Figure 5 shows the structure of a table-driven implementa-
tion of the time-division multiplexed switching fabric. The
array routeli] gives the index of the line j to which line i is
connected. Unconnected lines can be routed to the bit
bucket. (We considered but rejected a plan to generate the
switching fabric code on the fly, using direct transfers to
avoid the indirection through the routef] array.) Bus band-
width rather than instruction execution time is likely to be
the bottleneck of switching fabric performance.

More expensive PBX architectures, like System 75! and the
Rolm CBX*, switch calls over a dedicated bus. Because the



throughput
bus type (MBytes/sec)
PC AT 16-bit 0 8
wait state 8 MHz
PC AT 16-bit 0 10
wait state 10 MHz
PC AT 16-bit 0 12
wait state 12 MHz
EISA 32 bit 33

FIGURE 3. Performance levels o; IBM PC busses
(from Eggebrecht”)

bus is used for a single purpose, bus utilization is easy to
compute—each call receives its own time slot, and the bus
bandwidth directly determines the number of calls which
can be handled at any one time. Our PC-based architecture,
in contrast, uses the bus for the fetching of program instruc-
tions and data as well as switching, making performance
analysis a little more difficult. We used a back-of-the-enve-
lope analysis to first determine whether switching would
require enough bandwidth to potentially conflict with the
CPU’s bus operations. If this simplified analysis indicated
that the bus might be overutilized, a much more detailed
analysis would be required to determine the proper bus
bandwidth.

Assuming 10 line cards on a switch gives a maximum of
five calls active at any one time. Each call requires four 16-
bit transfers every 125 us (each card-to-card movement
requires two bus transactions). Therefore, switching
requires a bus utilization of .64 MBytes/sec. Figure 5 gives
the throughput of several different PC busses. The ISA bus
on a 386 system runs at 8 MHz, so switching will use only
4% of the available bus bandwidth, leaving the rest for
instruction and data transfer. Because bus utilization is so
low and the switching fabric operation can easily be well-
characterized, a more detailed analysis of bus utilization
was not required.

Once we partitioned the functional specification into the
processes shown in Figure 3, most of the allocation deci-
sions were obvious. Basic line card functions would clearly
be implemented on the custom line cards. Similarly, billing
and routing have sufficiently long deadlines that they can
easily be implemented as software processes executing on
the central CPU. The performance analysis of Section4
showed that the switching fabric could easily be imple-
mented by a small process on the main CPU which passed
data between the line cards.
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A DTMF digit must be held for at least 0.1 sec to be a valid
digit. DTMF detection may be implemented in analog cir-
cuits as a filter bank; it may be implemented on the samples
using the fast Fourier transform or more efficiently by
Goetzel’s algorithm6, which implements a digital filter
bank. There are three locations in the switch at which
DTMF digits can be detected:

* a DTMF detection filter bank on each line card;
¢ aprocess running on the main CPU;

® a process running on a co-processor attached to the ISA
bus.

Process allocation and component selection are intimately
related in this case—the feasibility of implementing DTMF
detection on the main CPU depends on the speed of the
CPU selected.

DTMF detection implemented on the main CPU competes
with the switching fabric for CPU cycles. The detection
process requires a substantial amount of computation
because of the 0.1 sec digit duration specification. While
the switching fabric deadline is tighter than the deadline for
detecting DTMF digits, if the CPU is not fast enough then
the switching fabric will keep DTMF detection from com-
pleting on time.

digit detection
platform time (sec)
i386DX, 20 MHz | .028
Pentium, 60 MHz | .0030

FIGURE 4. DTMF detection times for candidate
platforms.

To determine whether DTMF detection could be imple-
mented on the main CPU, we implemented Goetzel’s algo-
rithm in a C program and ran it on two candidate platforms:
an i386DX running at 20 MHz and a Pentium Processor!
running at 60 MHz. We did not test the algorithm on a 486
because we did not have one readily available. The results
are summarized in Figure 6, which shows the total CPU
time required to detect a digit in a 0.1 sec interval. The
algorithm ran sufficiently fast on the Pentium processor that
DTMEF detection would not be a significant load on the pro-
cessor. On the 386, however, detecting a digit required
about 1/4 of the length of the detection interval itself.

1. Pentium Processor is a trademark of Intel.



Rate monotonic zmalysis5 can be used to conservatively
estimate CPU capacity. RMA gives an upper bound of CPU
utilization of 69%; if the CPU used 28% of its capacity
detecting digits, switching, billing, and routing would be
able to use only 41% of the CPU capacity under RMA
assumptions. Even if a more efficient schedule could be
found (loosening the requirements of rate-monotonic analy-
sis can allow schedules with higher utilizations), we
believed that this margin was too tight to accommodate
changes in functionality or implementation which were
likely to occur during development. Equally important,
designing software to meet tight utilization requirements
might require more time than we had allotted to complete
the project. As a result, we ruled out allocating DTMF
detection to a 386 platform.

We could have chosen a Pentium PC for the system plat-
form, but at the time the purchase decision was made, Pen-
tium PCs were both significantly more expensive than
either 386 or 486 platforms and also required long lead
times. We considered building a co-processor board which
would contain a TI TMS32010 DSP, which can execute
DTMF detection for a single call. However, building an
additional piece of custom hardware would greatly increase
the design time required and add substantial design risk. We
chose to add an analog DTMF detection chip to every line
card; the line card presents the detected DTMF digit as sta-
tus bits continuously available to the routing process. A
switch designed to support a large number of line cards
would probably not include DTMF detection on every line
card, since the cost of line cards is a major component of
the cost of large switching systems. However, given our
emphasis on minimizing design time, we found this solu-
tion to give us both low design time and low cost.

5 Conclusions

We were able to complete most, but not all of the software
and hardware design in the one semester allocated to the
project. Most of the software was completed on time, but al
full test was not possible until we had at least two function-
ing line cards; a test of multiple, simultaneous calls could
not be made until we had at least four line cards. The line
card PCB was shipped for fabrication in December, 1993.
We spent most of the subsequent semester testing and
debugging the PCB. One bug with the DTMF circuit still
remained even after this extensive analysis. Even though we
chose the PC as a platform because it allowed us to develop
a great deal of code without waiting for prototype hardware
to be built, our ability to meet our schedule was still com-
promised by a lack of line cards. A prototyping system
which would allow us to run large software applications on
simulations of as-yet-unconstructed devices would have let
us more completely separate the software and hardware
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design flows. The software and hardware designs for Tiger-
Switch are available via anonymous FTP from ee-ftp.prin-
ceton.edu, with the sources in the pub/Embedded/
Examples/TigerSwitch directory.

We close with a few general observations on TigerSwitch
and hardware-software co-design:

¢ We take a broad definition of a process—a single task
which may be implemented in either software or custom
hardware. Most of the critical design decisions were
made at the process level. Once we partitioned the sys-
tem’s functions into tasks and allocated those tasks to
components, implementing the software and hardware
components themselves was straightforward. The archi-
tectural analysis which led us to our partitioning and
allocation, however, required a great deal of effort.

e Performance analysis drives the design of systems
which have hard real-time deadlines. Processes on the
critical path require the most detailed performance anal-
ysis. We had to implement the DTMF function in C
code and measure its performance on candidate CPUs to
determine that process’s performance to sufficient accu-
racy. A less-critical function like switching required
only a back-of-the-envelope analysis. This experience is
analogous to hardware design: a few critical functions,
like the ALU carry chain, may be analyzed using timing
or circuit simulation, while other functions may be
checked using much simpler timing models.

* Specifications are very important to the design of com-
plex systems. Good specifications are often hard to get.
While the structure of the specification may be a long
way from the system’s internal architecture, functional
and performance bugs are very likely to be created when
designers do not have a clear description of what they
are trying to build.
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